Tissue oxygen supply determined by Microvascular Oxygen Saturation (µSO2), Blood Flow (BF) and subcutaneous Tissue pO₂ (PsqO2) during whole Body Heating and Normobaric Hyperoxia in healthy Volunteers

Sommer-N*, Sharma-N+, Taguchi-A+, Kurz-A+

Friedrich Alexander University, Erlangen, Germany*, Washington University, St. Louis, USA+

Introduction

Determination of **oxygen supply of tissue** needs observation of parameters of **microcirculation**

<u>Aim:</u>

- Comparison of methods of measurement of tissue oxygen supply
 - established pO₂ Electrode + Laser Doppler with tissue spectometry
- in modell of
 - whole body warming
 - normobaric hyperoxia

Methods

Laser-Doppler (OptoFlow) optical, Doppler Principle Blood flow velocity (BF), about 2 mm under probe Tissue Spectrometry (AbTisSpec) optical, Absorption-Remissionprinciple Oxygen saturaiton of hemoglobin (μSO_2) , about 2 mm below probe

subcutaneous oxygen electrode (Licox) polarographic pO₂ (PsqO₂) about 0,1 mm distant of electrode

<u>Modells</u>

- Whole body warming
 - with warming blanked increasement of body temperature till sweating
 - active vasodilatation -> pO₂ and blood flow increases
 - Change in SO₂ because of increased delivery
- Normobaric hyperoxia

 Increasement of blood oxygen content by about 15%
 pO₂ increases, blood flow decreases, oxygen delivery?

Results whole body warming

Increase: PsqO2, μ SO2, BF with S.E.M and minimum and maximum, n = 4

Results whole body warming

70 60 B C $R^2 = 0,518$ 50 r = 0.72n=16 Ά $R^2 = 0,6276$ 40 r = 0,79n=15 $R^2 = 0,7198$ r = 0,85 30 n=17 D $R^2 = 0,8954$ 20 r = 0.93n=15 10 20 40 60 80 100 120 140

Comparison μ SO₂ and PsqO₂

- BF, μSO₂, PsqO₂
 increase
- Correlation between µSO₂ and pO₂, p<0,005
- no correlation of absolute values
 - Correlation between BF and PsqO₂, (r: 0,89, 0,80, 0,96, 0, 88) BF and µSO₂ (r: 0,54, 0, 87, 0,83, 0, 93)

Results Hyperoxia

 $PsqO_2$, μSO_2 , BF with S.E.M and min. and max., n = 6

Discussion

during warming

good correlation of $PsqO_2$, μSO_2 , and BF, oxygen transport increased

during hyperoxia

no correlation, subcutaneous pO₂ measurement and local optic SO₂ measurement show different physiological parameter

- pO₂-Electrode especially sensitive for arterial pO₂
 - optic SO_2 determination especially in venous area + no arterial SO_2 change with increased arterial pO_2 -> no determination of arterial oxygen increase

Discussion

Implications for tissue oxygen supply during normobaric hyperoxia:

Art. or tissue-pO₂ increases, venous SO₂ constant, blood flow decreases:

♦ same oxygen supply with decreased blood flow

Increased oxygen supply (despite decreased flow) with increased consumption

♦ (Change of oxygen binding curve with increased oxygen uptake of tissue)

Conclusion + further Questions

- Local SO₂ and pO₂ are different measurement parameter
- Only by measurement of all parameter a complete picture of oxygen supply is achieved (Aim: Determination of supply, consumption, hypoxia "lethal corner")
- Conditions of constant blood flow during hyperoxia?
 - Measurement in wound
 - Measurement in diabetic neuropathy
- Hyperbaric Hyperoxia?